
LLM-Based Music Generation Using
Beat-Standardized MIDI Tokens

Huaiyu Zhang, Braden Stitt, Dominic Flores, Michael Kausch, Chengwei Lei

College of Natural Sciences, Mathematics, and Engineering Department of Computer and Electrical Engineering and Computer Science

Tokenization

GPT2 Model
• Autoregressive Learning: Ideal for generating

temporally coherent music by predicting one

token at a time.

• Transformer Architecture: Captures long-

range dependencies crucial for musical

structure.

• Lightweight & Customizable: Models offer a

balance between performance and resource

efficiency.

• Benefit: reduced training overhead while

maintaining sequence quality.

Midi LMAudioLM

User Interaction / Data Flow

Training

 GPT2

 Training

 Loss

 AudioLM

Hyperparameter Value

Layers 6

Heads 8

Hidden Dim. 768

Token Size 1024

Vocab Size 4050

Introduction
 This project explores symbolic music

generation using beat-standardized MIDI tokens

and a large language model (LLM). MIDI data is

preprocessed into rhythm-aligned sequences

with consistent tempo and structure, allowing the

model to better capture musical patterns. We

train GPT-2 to predict these beat-based tokens,

enabling it to generate coherent melodies that

can be rendered into audio.

 We believe the beat alignment improves

temporal consistency and helps the model

generalize across styles. Output quality is

evaluated using Fréchet Audio Distance (FAD)

and SHA-256 hashing to ensure novelty. This

work also serves as a comparative baseline

against waveform-based models such as

AudioLM.

To transform musical input into a format suitable for language modeling, we implemented a custom

tokenization pipeline for MIDI’s. This approach converts simplified numerical notation into a structured

sequence of text-based tokens representing musical events and was compared against AudioLM, a

state-of-the-art hierarchical transformer architecture developed by Google.

User Interface
We developed a browser-based graphical

user interface (GUI) using ReactJS and Vite.

Users can: Upload or record audio in the

browser, trigger symbolic or waveform-based

generation, and playback and download

generated results.

Node.js + ExpressJS server routes client

requests and triggers Python scripts to process

audio within isolated environments, ensuring

compatibility and reproducibility.

Acknowledgements
Dr. Lei for his excellent guidance, feedback

and inspiration throughout this project. Dr. Cruz

for allowing us use of his research server.

Datasets
• MidiLM: ADL Piano (~11,000 piano MIDI)

• AudioLM: Dopeloop (~30,000
procedurally generated MIDI)

	Slide 1

